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Among the nineteenth century 
figures who contributed to the 
development of computers in the 
twentieth century, George Boole has 
a unique standing. It is not difficult to 
see the mechanical calculating 
machines which Charles Babbage 
attempted to build, or the tabulating 
machines manufactured by Herman 
Hollerith to process data for the  U. S. 
Census Bureau as predecessors of 
modern computers. George Boole, 
however, was a mathematician who 
developed a rather abstract system of 
rules for logical thought. His system 
which used equations with variables 
and operators to represent 
statements, came to be known as Boolean Algebra.  

Boole's achievements were praised by his 
contemporaries, and the mathematician Augustus 
De Morgan added a corollary known as "De 
Morgan's Theorem" (De Morgan also corresponded 
with Charles Babbage). The  relevance of Boolean 
Algebra to the design of electrical calculating 
machines was not recognized until Claude Shannon, 
a graduate student at the Massachusetts Institute of 
Technology wrote a Master's thesis on the topic in 
1937. Shannon had been employed by another 
pioneer in the field of computers, Vannevar Bush, to 
work on the Differential Analyser, a modern version 
of Babbage's Analytical Engine. The electrical relays 
used in the automated machines of the day were 
always in one of two states, on or off, and Shannon 
recognized that the Boolean system, where 0 and 1 
represent False and True statements, could be used 
to systematize and simplify the design of complex 
electrical circuits.  

AND 
Let’s begin by looking at how the conjunction 

“and” is treated in Boolean logic. Take the 
statement:  

“If Jack is nimble and if Jack is quick 
then Jack can jump over the candlestick.” 

This sentence can be broken down 
into three statements, each of which can 
be represented  by a variable.  

A “Jack is nimble” 

B “Jack is quick” 

x “Jack can jump over the candlestick” 

In the English language, conditional 
statements are those which be gin with 
the word “if” (of possibly “when”, “given 
that”, “assuming that” or other similar 
words and phrases). In this example, the 
conditions are that Jack must be nimble 
and Jack must be quick. If these two 

conditions are met, then there is a result or 
outcome; in this case, the result is that Jack is able to 
jump over the candlestick. If either, or both 
conditions are unfulfilled or false, then Jack cannot 
perform the gymnastic feat.  

The statements used in this system can only be 
true or false. When we have two conditions, 
therefore, there are four possible combinations of 
conditions  and results which must be considered: 

A is false and  B is false  then  x is false 
A is false and  B is true  then  x is false 
A is true and  B is false  then  x is false 
A is true and  B is true  then  x is true 

We can use a table to chart the various possible 
combinations.  

A B x 

False False False 

False True False 

True False False 

True True True 

George Boole 



Department of Technology and the Arts  Glenforest Secondary School 

2 

3-Input AND   

This type of table is called a truth table. Each 
statement has only two possible values, true and 
false, which can be represented by the numbers 
1(true) and 0 (false). Therefore the truth table can 
be simplified by using ones and zeros to represent 
true and false. The resulting truth table for this 
statement looks like this: 

A B x 
0 0 0 
0 1 0 
1 0 0 

AND 

1 1 1 

Since both A and B must be true for x to be true, 
this is known as the AND statement.  

The relationship between the conditions (in 
electronic circuits the conditions are often referred 
to as inputs) and the result (output) can also be 
expressed algebraically. In Boolean algebra, the 
conditions and the result are separated by an equals 
sign.  

The AND statement is represented by the 
multiplication sign, and the whole statement can 
thus be written: 

  A B x⋅ =  
Intuitively, it might seem that the AND 

connection should be represented by the plus sign 
rather than multiplication  In fact, when performing 
a Boolean search on an internet search engine or a 
computer data base, the plus sign is sometimes used 
for AND. However, if we substitute the values from 
the truth table for the variables, it should be obvious 
why Boole chose the multiplication sign to represent 
AND: 

0 0 0⋅ =   
0 1 0⋅ =  
1 0 0⋅ =  
1 1 1⋅ =  

There is another way of representing Boolean 
statements which is very commonly used in 
designing digital circuits. Each function has a 
graphical representation known as a gate. The AND 
gate looks like this:  

In the case of the AND gate, both conditions (inputs) 
must be true if the outcome is to be true. If there 
were more than two conditions connected by the 
word “and” then they would all have to be true  for 
the result to be true. Another way to express the 
meaning of the AND function therefore is to say:  

“All are true” 

For example, a university might have the 
following entrance requirements:  

“The applicant must (A) have completed 6 grade 
12 courses, (B) have an average mark of 75%, and 
(C) pass an entrance exam.” 

This statement can be written as an algebraic 
expression like this: 

A B C y⋅ ⋅ =  

Since there are three conditions, A, B, and C, 
each of which may be true or false, there are 
(2x2x2) = 8 possible combinations, so the truth 
table in this case will have 8 lines. (Note that the 
possibilities are ordered from 0 to 7 in binary.) 

A B C y 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 

AND 

1 1 1 1 

There is only one combination of the conditions 
which satisfies the entrance requirements: all the 
conditions must be true. 

A three input AND gate would be drawn as 
shown below.  

 

 

 

AND             
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OR 
The second term in the English language which 

has a specific meaning in digital logic is the word 
“or”. Take ,for example, the statement:  

“If the pitcher throws four balls or if the 
batter is hit by a pitch, then the batter may 
advance to first base.”  

As we did in the previous example, we can divide 
this sentence into three statements:  

A “the pitcher throw four balls” 

B  “the batter is hit by a pitch” 

y “the batter may advance to first base” 

If either of the conditions is true, then the 
outcome will be that the batter gets a free base. 
Notice that this includes the possibility that with a 
count of three balls, the pitcher throws a ball which 
hits the batter; if both conditions are true, the batter 
advances.  

The truth table for the OR function has the same 
combination of inputs as the AND truth table, but 
the results are different. 

A B x 
0 0 0 
0 1 1 
1 0 1 

OR 

1 1 1 

If any of the inputs to the OR  gate are true, then 
the outcome is true.  

In Boolean algebra, the OR function is 
represented by the + sign. Thus the OR statement 
is written as an expression in this way: 

A B x+ =  

The reasons for this may not be immediately 
clear, but if we substitute the values from the truth 
table into the expression, and also substitute 
“greater than or equal to” for the equals sign, we 
can see the logic at work here: 

A B x+ ≥  
0 0 0+ ≥  
0 1 1+ ≥  
1 0 1+ ≥  
1 1 1+ ≥  

The OR gate looks like this:  

In the case of the OR gate, either or both of the 
conditions (inputs) must be true if the outcome is to 
be true. If there were more than two conditions 
connected by the word “or” then the result will be 
true if any of the  conditions are true. Another way 
to express the meaning of the OR function therefore 
is to say:  

“Any are true”  

To take another example from baseball rules,  

“If a batted ball (A) lands in fair territory beyond 
the infield, or if (B) after hitting the ground it is in or 
above fair territory as it passes first or third base, or 
if (C) while still on the infield, it rolls or bounces into 
fair territory, then it is a fair ball.”  

When there are more than two conditions, as in 
this example, only one of them need be true for the 
result to be true. Although it is physically impossible 
for one ball to satisfy all three conditions at once, 
this does not invalidate the logic of the statement.  

This statement can be written as an algebraic 
expression like this: 

A B C x+ + =  

The truth table for a three input OR gate would 
look like this:  

A B C x 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 

OR 

1 1 1 1 

The graphic symbol for the three-input OR gate 
looks like this:  

 

OR               
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IDENTITY      

INVERTER     

NOT 
The simplest logical statement recognized by 

Boole is the negation, which is merely the statement 
that something is not true. Algebraically this is 
expressed by placing an overbar above the variable 
or expression which is being negated. For example, 

the expression A  means simply “A is not true”, 
while A B+  means “neither A nor B is true”.  

For an example, consider the statement: 

“If it is not daytime, then it is nighttime.” 

If we use variables to represent these 
statements, then we have: 

A  “It is daytime” 

A  “It is not daytime” 

x “It is nighttime” 

Thus the Boolean expression for the sentence is: 

A x=   

The NOT gate, or Inverter, is the graphic 
representation of this equation. Unlike the AND and 
the OR gates, it has only one input and one output. 

 
Notice, however, that as with the other gates we 

discussed, the input can be either true or false. So 
the statement “if it is not daytime, then it is 
nighttime” also implies that if it is daytime, then it is 
not nighttime. But in each case when one statement 
is true, then the other is false.  

The truth table for the Inverter is very simple, 
but not trivial. There are only two possible states for 
the input—true or false, 1 or 0—, and the output 
will always be the opposite, or inverted.  

A x 
0 1 NOT 
1 0 

The negation or inversion is actually indicated on 
the NOT gate by the circle or “bubble” on the 
output of the gate. Without the bubble, the 
triangular gate is called the Identity gate. 

IDENTITY 
 “A rose is a rose is a rose.” 

When Gertrude Stein wrote  these famous 
words in her poem “Sacred Emily”, she most 

certainly did not have digital logic in mind. But the 
sentiment expressed sums up the function of the 
Identity gate very nicely: the output is always the 
same as the input.  

In electronics, this symbol represents a buffer or 
an amplifier. Both these devices are designed so that 
the output is the same as the input.  

A x 
0 0 IDENTITY 
1 1 

 

NAND 
The defendant testified under oath: “I did not kill 

her and bury the body.” He may be making a true 
statement, and yet still be guilty of a crime! How is 
this possible? What is he actually denying? If we 
parse this sentence, it can be written “I did not [kill 
her and bury the body].” In other words, the 
defendant is denying that he committed both 
crimes. While it is possible that he committed 
neither crime, he has not categorically said “I did not 
kill her and I did not bury the body”.  

The difference between these statements can be 
seen more clearly if we use Boolean algebra to 
analyse it. There are two acts involved: 

A He killed her 

B He buried her 

The first statement asserts “I did not kill her and 
bury the body” This can be written: 

A B y⋅ =  
 The second statement, “I did not kill her and I did 
not bury the body” is fundamentally different. It can 
be written: 
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   A B y⋅ =        

A B y⋅ =  

Let’s look at the truth tables for these two 
expressions. In the first case, we have an AND 
statement with an overbar above it, asserting that 
the statement taken as a whole is false.  In other 
words, the accused is making a statement of the 
form NOT AND, which is normally abbreviated 
NAND. The output of the NAND gate truth table is 
the inverse of the AND gate output. In other words, 
wherever there is a zero in the output column of the 
AND truth table there is a one in the NAND 
column, and vise versa.  

A B AND NAND 
0 0 0 1 
0 1 0 1 
1 0 0 1 
1 1 1 0 

If we look at this truth table we can see that 
there are three conditions under which the NAND 
statement is true: When A is false, when B is false, 
and when both are false. When both A and B are 
true, then the NAND statement is false. Going back 
to our defendant’s testimony, his statement is true 
as long as he did not commit both crimes, but he 
may still be guilty of one.  

The expression A B y⋅ = is quite different. To 
construct the truth table, we must first find the 
inverse of A and B for all possible combinations, 
then apply the criteria for the AND gate to the 
inverted values (all must be true). The result looks 
like this:  

A B A  B  A B⋅  
0 0 1 1 1 
0 1 1 0 0 
1 0 0 1 0 
1 1 0 0 0 

Thus we can see that the statement “I did not kill 
her and I did not bury her”, is an unequivocal 
statement of innocence, because it is true only when 
both denials are true.  

The NAND gate looks like an AND gate with the 

negation bubble on the output.  

It is also possible to place the bubbles on the 
inputs to the AND gate, which corresponds to the 
expression A B y⋅ =  

The meaning of the NAND gate can thus be 
expressed as “not both” or if there are more than 
two inputs: 

“not all” 

 

NOR 
As it happens, there is another way that someone 

accused of misdoing can state his or her innocence. 
A literate eight-year-old faced with an allegation 
might say: 

“I neither chewed gum in class, nor stuck used 
gum under the desk!” 

If we parse this sentence, we can see that the 
form “neither … nor” can be written: 

“I did not [chew gum in class or stick used gum 
under the desk].”  

Again we have two different acts which are being 
denied: 

A chew gum in class 

B stick used gum under the desk 

Written as a Boolean expression, we have the 
equation: 

A B y+ =  

The truth table for this expression is derived by 
inverting the outputs for the OR gate: 

A B OR NOR 
0 0 0 1 
0 1 1 0 
1 0 1 0 
1 1 1 0 

Notice that the NOR statement is true only 
when both the inputs are false. Another way of 

NAND           
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XNOR           

XOR           

saying this is “neither is true” or if there are more 
than two inputs: 

“none is true” 

The NOR gate is drawn like the OR gate with 
the output inverted: 

 

 

 

EXCLUSIVE OR 
In discussing the OR gate, it was noted that the 

result is true when either condition is true and also 
when both are true. The OR function is sometimes 
described as the inclusive OR, because the case 
where both are true is included.  

Often, however, we use the word OR in an 
exclusive fashion. A mother in the video store might 
tell her children that they can rent a movie or a 
video game. If the spoiled brats clamor to rent a 
game and a movie, Mom will likely respond: “No, I 
meant one or the other but not both!” 

The truth table for the exclusive OR, also known 
as the XOR gate, looks like this: 

A B x 
0 0 0 
0 1 1 
1 0 1 

XOR 

1 1 0 

Notice that when both conditions are true, the 
outcome is false. The XOR gate is drawn like an OR 
gate with the addition of an extra curved line on the 
input side: 

To indicate the similarities and differences 
between the inclusive and exclusive OR gate, the 
expression for the XOR gate uses the plus sign 
inside a circle: 

A B y⊕ =  

EXCLUSIVE NOR 
The Exclusive NOR or XNOR is simply an XOR 

gate with the output inverted. The expression is 
written like this:  

A B y⊕ =  

The truth table for the Exclusive NOR, 
resembles that of the XOR in that there are two 
zeros and two ones in the output column, unlike the 
other gates which always have one unique output. 
The outputs, however are the inverse of the XOR 
outputs. Thus the table looks like this: 

A B x 
0 0 1 
0 1 0 
1 0 0 

XNOR 

1 1 1 

Following the pattern already established, the 
symbol for the XNOR is drawn by adding a bubble 
to the output of the XOR gate. 

The function of the XNOR gate can be summed 
up in the phrase: 

“neither or both are true” 

This is not a phrase one often hears spoken, but 
this gate is very useful in digital electronics. Notice 
that the output is true whenever A = B. This gate 
can therefore be very useful in making comparisons 
between two binary numbers.  

NOR              
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Review Questions 
Part 1 

Fill in the blanks 

1. In Boolean Logic the numbers 1 and 0 represent 
____________ and ______________. 

2. When there are two inputs to a logic gate, the 
truth table will have _______ lines.  

3. The output of the AND gate is 1when _______ 
of the inputs are true. 

4. The output of the OR gate is 1when _______ of 
the inputs are true. 

5. The output of the NOT gate is 1when the input 
is __________. 

6. The output of the NAND gate is 0 when ______ 
of the inputs are __________. 

7. The output of the NOR gate is 1when _______ 
of the inputs are ________. 

8. “One or the other but not both” describes the 
operation of the ___________ gate. 

9. The truth table below corresponds to the 
___________ gate. 

A B x 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

10. The truth table below corresponds to the 
___________ gate. 

A B x 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

11. The truth table below corresponds to the 
___________ gate. 

A B x 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

12. The truth table below corresponds to the 
___________ gate. 

A B x 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Part 2 

Answer the following questions in your notebook. 

13. Why is the multiplication sign used to represent 
the AND function in Boolean algebra? 

14. Which comparator would be more appropriate 
than the equals sign in the expression 
A B x+ = ? Why? 

15. Give an example of an English language 
statement which could be represented by the 
Boolean expression A B y+ = . (Do not copy 
from the text, write your own question.) 

16. Give an example of an English language 
statement which could be represented by the 
Boolean expression A B C y⋅ ⋅ = . 

17. What use is a gate like the  Identity function 
where the output is the same as the input? 

18. Draw the graphical symbol for the NOR gate. 

19. Draw the graphical symbol for the AND gate. 

20. Draw the graphical symbol for the NOT gate. 

21. Draw the graphical symbol for the XNOR gate. 

22. Draw the graphical symbol for the OR gate. 

23. Explain the difference between the Inclusive OR 
gate and the Exclusive OR gate. 

24. What symbol is used in algebraic expressions to 
represent negation or inversion? 

25. How is inversion represented on the graphical 
symbols of the logic gates? 

Part 3 

On the next page complete the chart by filling in 
the symbol, expression and truth table for each of the 
eight logic gates. 
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Digital Logic Gates 
NAME SYMBOL EXPRESSION TRUTH TABLE 

   
A y  
0 0  
1 1  

 
IDENTITY 

 

 

 

x A=  

   
   

A y  
0   
1   

 
NOT 

  

   
A B y 
0 0  
0 1  
1 0  

 
AND 

  

1 1  
A B y 
0 0  
0 1  
1 0  

 
OR 

  

1 1  
A B y 
0 0  
0 1  
1 0  

 
NAND 

  

1 1  
A B y 
0 0  
0 1  
1 0  

 
NOR 

  

1 1  
A B y 
0 0  
0 1  
1 0  

 
XOR 

  

1 1  
A B y 
0 0  
0 1  
1 0  

 
XNOR 

  

1 1  
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