
Digital Logic Part 1

Boolean Logic Gates
G. Snider Glenforest Secondary School

Among the nineteenth century
figures who contributed to the
development of computers in the
twentieth century, George Boole has
a unique standing. It is not difficult to
see the mechanical calculating
machines which Charles Babbage
attempted to build, or the tabulating
machines manufactured by Herman
Hollerith to process data for the U. S.
Census Bureau as predecessors of
modern computers. George Boole,
however, was a mathematician who
developed a rather abstract system of
rules for logical thought. His system
which used equations with variables
and operators to represent
statements, came to be known as Boolean Algebra.

Boole's achievements were praised by his
contemporaries, and the mathematician Augustus
De Morgan added a corollary known as "De
Morgan's Theorem" (De Morgan also corresponded
with Charles Babbage). The relevance of Boolean
Algebra to the design of electrical calculating
machines was not recognized until Claude Shannon,
a graduate student at the Massachusetts Institute of
Technology wrote a Master's thesis on the topic in
1937. Shannon had been employed by another
pioneer in the field of computers, Vannevar Bush, to
work on the Differential Analyser, a modern version
of Babbage's Analytical Engine. The electrical relays
used in the automated machines of the day were
always in one of two states, on or off, and Shannon
recognized that the Boolean system, where 0 and 1
represent False and True statements, could be used
to systematize and simplify the design of complex
electrical circuits.

AND
Let’s begin by looking at how the conjunction

“and” is treated in Boolean logic. Take the
statement:

“If Jack is nimble and if Jack is quick
then Jack can jump over the candlestick.”

This sentence can be broken down
into three statements, each of which can
be represented by a variable.

A “Jack is nimble”

B “Jack is quick”

x “Jack can jump over the candlestick”

In the English language, conditional
statements are those which be gin with
the word “if” (of possibly “when”, “given
that”, “assuming that” or other similar
words and phrases). In this example, the
conditions are that Jack must be nimble
and Jack must be quick. If these two

conditions are met, then there is a result or
outcome; in this case, the result is that Jack is able to
jump over the candlestick. If either, or both
conditions are unfulfilled or false, then Jack cannot
perform the gymnastic feat.

The statements used in this system can only be
true or false. When we have two conditions,
therefore, there are four possible combinations of
conditions and results which must be considered:

A is false and B is false then x is false
A is false and B is true then x is false
A is true and B is false then x is false
A is true and B is true then x is true

We can use a table to chart the various possible
combinations.

A B x

False False False

False True False

True False False

True True True

George Boole

Department of Technology and the Arts Glenforest Secondary School

2

3-Input AND

This type of table is called a truth table. Each
statement has only two possible values, true and
false, which can be represented by the numbers
1(true) and 0 (false). Therefore the truth table can
be simplified by using ones and zeros to represent
true and false. The resulting truth table for this
statement looks like this:

A B x
0 0 0
0 1 0
1 0 0

AND

1 1 1

Since both A and B must be true for x to be true,
this is known as the AND statement.

The relationship between the conditions (in
electronic circuits the conditions are often referred
to as inputs) and the result (output) can also be
expressed algebraically. In Boolean algebra, the
conditions and the result are separated by an equals
sign.

The AND statement is represented by the
multiplication sign, and the whole statement can
thus be written:

 A B x⋅ =
Intuitively, it might seem that the AND

connection should be represented by the plus sign
rather than multiplication In fact, when performing
a Boolean search on an internet search engine or a
computer data base, the plus sign is sometimes used
for AND. However, if we substitute the values from
the truth table for the variables, it should be obvious
why Boole chose the multiplication sign to represent
AND:

0 0 0⋅ =
0 1 0⋅ =
1 0 0⋅ =
1 1 1⋅ =

There is another way of representing Boolean
statements which is very commonly used in
designing digital circuits. Each function has a
graphical representation known as a gate. The AND
gate looks like this:

In the case of the AND gate, both conditions (inputs)
must be true if the outcome is to be true. If there
were more than two conditions connected by the
word “and” then they would all have to be true for
the result to be true. Another way to express the
meaning of the AND function therefore is to say:

“All are true”

For example, a university might have the
following entrance requirements:

“The applicant must (A) have completed 6 grade
12 courses, (B) have an average mark of 75%, and
(C) pass an entrance exam.”

This statement can be written as an algebraic
expression like this:

A B C y⋅ ⋅ =

Since there are three conditions, A, B, and C,
each of which may be true or false, there are
(2x2x2) = 8 possible combinations, so the truth
table in this case will have 8 lines. (Note that the
possibilities are ordered from 0 to 7 in binary.)

A B C y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0

AND

1 1 1 1

There is only one combination of the conditions
which satisfies the entrance requirements: all the
conditions must be true.

A three input AND gate would be drawn as
shown below.

AND

Digital Logic Part 1: Boolean Logic Gates G. Snider

 3

OR
The second term in the English language which

has a specific meaning in digital logic is the word
“or”. Take ,for example, the statement:

“If the pitcher throws four balls or if the
batter is hit by a pitch, then the batter may
advance to first base.”

As we did in the previous example, we can divide
this sentence into three statements:

A “the pitcher throw four balls”

B “the batter is hit by a pitch”

y “the batter may advance to first base”

If either of the conditions is true, then the
outcome will be that the batter gets a free base.
Notice that this includes the possibility that with a
count of three balls, the pitcher throws a ball which
hits the batter; if both conditions are true, the batter
advances.

The truth table for the OR function has the same
combination of inputs as the AND truth table, but
the results are different.

A B x
0 0 0
0 1 1
1 0 1

OR

1 1 1

If any of the inputs to the OR gate are true, then
the outcome is true.

In Boolean algebra, the OR function is
represented by the + sign. Thus the OR statement
is written as an expression in this way:

A B x+ =

The reasons for this may not be immediately
clear, but if we substitute the values from the truth
table into the expression, and also substitute
“greater than or equal to” for the equals sign, we
can see the logic at work here:

A B x+ ≥
0 0 0+ ≥
0 1 1+ ≥
1 0 1+ ≥
1 1 1+ ≥

The OR gate looks like this:

In the case of the OR gate, either or both of the
conditions (inputs) must be true if the outcome is to
be true. If there were more than two conditions
connected by the word “or” then the result will be
true if any of the conditions are true. Another way
to express the meaning of the OR function therefore
is to say:

“Any are true”

To take another example from baseball rules,

“If a batted ball (A) lands in fair territory beyond
the infield, or if (B) after hitting the ground it is in or
above fair territory as it passes first or third base, or
if (C) while still on the infield, it rolls or bounces into
fair territory, then it is a fair ball.”

When there are more than two conditions, as in
this example, only one of them need be true for the
result to be true. Although it is physically impossible
for one ball to satisfy all three conditions at once,
this does not invalidate the logic of the statement.

This statement can be written as an algebraic
expression like this:

A B C x+ + =

The truth table for a three input OR gate would
look like this:

A B C x
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1

OR

1 1 1 1

The graphic symbol for the three-input OR gate
looks like this:

OR

Department of Technology and the Arts Glenforest Secondary School

4

IDENTITY

INVERTER

NOT
The simplest logical statement recognized by

Boole is the negation, which is merely the statement
that something is not true. Algebraically this is
expressed by placing an overbar above the variable
or expression which is being negated. For example,

the expression A means simply “A is not true”,
while A B+ means “neither A nor B is true”.

For an example, consider the statement:

“If it is not daytime, then it is nighttime.”

If we use variables to represent these
statements, then we have:

A “It is daytime”

A “It is not daytime”

x “It is nighttime”

Thus the Boolean expression for the sentence is:

A x=

The NOT gate, or Inverter, is the graphic
representation of this equation. Unlike the AND and
the OR gates, it has only one input and one output.

Notice, however, that as with the other gates we

discussed, the input can be either true or false. So
the statement “if it is not daytime, then it is
nighttime” also implies that if it is daytime, then it is
not nighttime. But in each case when one statement
is true, then the other is false.

The truth table for the Inverter is very simple,
but not trivial. There are only two possible states for
the input—true or false, 1 or 0—, and the output
will always be the opposite, or inverted.

A x
0 1 NOT
1 0

The negation or inversion is actually indicated on
the NOT gate by the circle or “bubble” on the
output of the gate. Without the bubble, the
triangular gate is called the Identity gate.

IDENTITY
 “A rose is a rose is a rose.”

When Gertrude Stein wrote these famous
words in her poem “Sacred Emily”, she most

certainly did not have digital logic in mind. But the
sentiment expressed sums up the function of the
Identity gate very nicely: the output is always the
same as the input.

In electronics, this symbol represents a buffer or
an amplifier. Both these devices are designed so that
the output is the same as the input.

A x
0 0 IDENTITY
1 1

NAND
The defendant testified under oath: “I did not kill

her and bury the body.” He may be making a true
statement, and yet still be guilty of a crime! How is
this possible? What is he actually denying? If we
parse this sentence, it can be written “I did not [kill
her and bury the body].” In other words, the
defendant is denying that he committed both
crimes. While it is possible that he committed
neither crime, he has not categorically said “I did not
kill her and I did not bury the body”.

The difference between these statements can be
seen more clearly if we use Boolean algebra to
analyse it. There are two acts involved:

A He killed her

B He buried her

The first statement asserts “I did not kill her and
bury the body” This can be written:

A B y⋅ =
 The second statement, “I did not kill her and I did
not bury the body” is fundamentally different. It can
be written:

Digital Logic Part 1: Boolean Logic Gates G. Snider

 5

 A B y⋅ =

A B y⋅ =

Let’s look at the truth tables for these two
expressions. In the first case, we have an AND
statement with an overbar above it, asserting that
the statement taken as a whole is false. In other
words, the accused is making a statement of the
form NOT AND, which is normally abbreviated
NAND. The output of the NAND gate truth table is
the inverse of the AND gate output. In other words,
wherever there is a zero in the output column of the
AND truth table there is a one in the NAND
column, and vise versa.

A B AND NAND
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

If we look at this truth table we can see that
there are three conditions under which the NAND
statement is true: When A is false, when B is false,
and when both are false. When both A and B are
true, then the NAND statement is false. Going back
to our defendant’s testimony, his statement is true
as long as he did not commit both crimes, but he
may still be guilty of one.

The expression A B y⋅ = is quite different. To
construct the truth table, we must first find the
inverse of A and B for all possible combinations,
then apply the criteria for the AND gate to the
inverted values (all must be true). The result looks
like this:

A B A B A B⋅
0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 0 0 0

Thus we can see that the statement “I did not kill
her and I did not bury her”, is an unequivocal
statement of innocence, because it is true only when
both denials are true.

The NAND gate looks like an AND gate with the

negation bubble on the output.

It is also possible to place the bubbles on the
inputs to the AND gate, which corresponds to the
expression A B y⋅ =

The meaning of the NAND gate can thus be
expressed as “not both” or if there are more than
two inputs:

“not all”

NOR
As it happens, there is another way that someone

accused of misdoing can state his or her innocence.
A literate eight-year-old faced with an allegation
might say:

“I neither chewed gum in class, nor stuck used
gum under the desk!”

If we parse this sentence, we can see that the
form “neither … nor” can be written:

“I did not [chew gum in class or stick used gum
under the desk].”

Again we have two different acts which are being
denied:

A chew gum in class

B stick used gum under the desk

Written as a Boolean expression, we have the
equation:

A B y+ =

The truth table for this expression is derived by
inverting the outputs for the OR gate:

A B OR NOR
0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

Notice that the NOR statement is true only
when both the inputs are false. Another way of

NAND

Department of Technology and the Arts Glenforest Secondary School

6

XNOR

XOR

saying this is “neither is true” or if there are more
than two inputs:

“none is true”

The NOR gate is drawn like the OR gate with
the output inverted:

EXCLUSIVE OR
In discussing the OR gate, it was noted that the

result is true when either condition is true and also
when both are true. The OR function is sometimes
described as the inclusive OR, because the case
where both are true is included.

Often, however, we use the word OR in an
exclusive fashion. A mother in the video store might
tell her children that they can rent a movie or a
video game. If the spoiled brats clamor to rent a
game and a movie, Mom will likely respond: “No, I
meant one or the other but not both!”

The truth table for the exclusive OR, also known
as the XOR gate, looks like this:

A B x
0 0 0
0 1 1
1 0 1

XOR

1 1 0

Notice that when both conditions are true, the
outcome is false. The XOR gate is drawn like an OR
gate with the addition of an extra curved line on the
input side:

To indicate the similarities and differences
between the inclusive and exclusive OR gate, the
expression for the XOR gate uses the plus sign
inside a circle:

A B y⊕ =

EXCLUSIVE NOR
The Exclusive NOR or XNOR is simply an XOR

gate with the output inverted. The expression is
written like this:

A B y⊕ =

The truth table for the Exclusive NOR,
resembles that of the XOR in that there are two
zeros and two ones in the output column, unlike the
other gates which always have one unique output.
The outputs, however are the inverse of the XOR
outputs. Thus the table looks like this:

A B x
0 0 1
0 1 0
1 0 0

XNOR

1 1 1

Following the pattern already established, the
symbol for the XNOR is drawn by adding a bubble
to the output of the XOR gate.

The function of the XNOR gate can be summed
up in the phrase:

“neither or both are true”

This is not a phrase one often hears spoken, but
this gate is very useful in digital electronics. Notice
that the output is true whenever A = B. This gate
can therefore be very useful in making comparisons
between two binary numbers.

NOR

Digital Logic Part 1: Boolean Logic Gates G. Snider

 7

Review Questions
Part 1

Fill in the blanks

1. In Boolean Logic the numbers 1 and 0 represent
____________ and ______________.

2. When there are two inputs to a logic gate, the
truth table will have _______ lines.

3. The output of the AND gate is 1when _______
of the inputs are true.

4. The output of the OR gate is 1when _______ of
the inputs are true.

5. The output of the NOT gate is 1when the input
is __________.

6. The output of the NAND gate is 0 when ______
of the inputs are __________.

7. The output of the NOR gate is 1when _______
of the inputs are ________.

8. “One or the other but not both” describes the
operation of the ___________ gate.

9. The truth table below corresponds to the
___________ gate.

A B x
0 0 1
0 1 0
1 0 0
1 1 0

10. The truth table below corresponds to the
___________ gate.

A B x
0 0 0
0 1 1
1 0 1
1 1 1

11. The truth table below corresponds to the
___________ gate.

A B x
0 0 0
0 1 1
1 0 1
1 1 0

12. The truth table below corresponds to the
___________ gate.

A B x
0 0 0
0 1 0
1 0 0
1 1 1

Part 2

Answer the following questions in your notebook.

13. Why is the multiplication sign used to represent
the AND function in Boolean algebra?

14. Which comparator would be more appropriate
than the equals sign in the expression
A B x+ = ? Why?

15. Give an example of an English language
statement which could be represented by the
Boolean expression A B y+ = . (Do not copy
from the text, write your own question.)

16. Give an example of an English language
statement which could be represented by the
Boolean expression A B C y⋅ ⋅ = .

17. What use is a gate like the Identity function
where the output is the same as the input?

18. Draw the graphical symbol for the NOR gate.

19. Draw the graphical symbol for the AND gate.

20. Draw the graphical symbol for the NOT gate.

21. Draw the graphical symbol for the XNOR gate.

22. Draw the graphical symbol for the OR gate.

23. Explain the difference between the Inclusive OR
gate and the Exclusive OR gate.

24. What symbol is used in algebraic expressions to
represent negation or inversion?

25. How is inversion represented on the graphical
symbols of the logic gates?

Part 3

On the next page complete the chart by filling in
the symbol, expression and truth table for each of the
eight logic gates.

Department of Technology and the Arts Glenforest Secondary School

8

Digital Logic Gates
NAME SYMBOL EXPRESSION TRUTH TABLE

A y
0 0
1 1

IDENTITY

x A=

A y
0
1

NOT

A B y
0 0
0 1
1 0

AND

1 1
A B y
0 0
0 1
1 0

OR

1 1
A B y
0 0
0 1
1 0

NAND

1 1
A B y
0 0
0 1
1 0

NOR

1 1
A B y
0 0
0 1
1 0

XOR

1 1
A B y
0 0
0 1
1 0

XNOR

1 1

Digital Logic Part 1: Boolean Logic Gates G. Snider

 9

